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Abstract 
The retrieval of images based on their visual similarity 

to an example image is an important and fascinating area of 
research. Here, a method to characterize visual appearance 
for determining global similarity in images is described. 

Images are filtered with Gaussian derivatives and ge- 
ometric features are computed from the filtered images. 
The geometric features used here are curvature and phase. 
Two images may be said to be similar if they have simi- 
lar distributions of such features. Global similarity may, 
therefore, be deduced by comparing histograms of these 
features. This allows for rapid retrieval and examples from 
collection of gray-level and trademark images are shown. 

1    Introduction 
The advent of large multi-media collections and digi- 

tal libraries has led to a need for good search tools to in- 
dex and retrieve information from them. For text avail- 
able in machine readable form (ASCII) a number of good 
search engines are available. However; there are as yet no 
good tools to retrieve images. The traditional approach to 
searching and indexing images using manual annotations 
is slow, labor intensive and expensive. In addition, textual 
annotations cannot encode all the information available in 
an image. There is thus a need for retrieving images us- 
ing their content. The indexing and retrieval of images 
using their content is a difficult problem. A person using 
an image retrieval system usually seeks to find semanti- 
cally relevant information. This entails solutions to such 
hard problems as automatic segmentation, robust feature 
detection and recognition, all of which are as yet unsolved. 
However, many image attributes like color, texture, shape 
and "appearance" are often directly correlated with the se- 
mantics of the problem.  For example, logos or product 
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packages (e.g., a box of Tide) have the same color wher- 
ever they are found. The coat of a leopard has a unique 
texture while Abraham Lincoln's appearance is uniquely 
defined. These image attributes can often be used to index 
and retrieve images. 

A common model for retrieval, and one that is adopted 
here, is that images in the database are processed and de- 
scribed by a set of feature vectors. A priori these vectors 
are indexed. During run-time, a query is provided in the 
form of an example image and its features are compared 
with those stored. Images are then retrieved in the or- 
der indicated by the comparison operator. In this paper, 
objects similar in visual appearance to a given query ob- 
ject are retrieved by comparing with a set of database im- 
ages using a characterization of their image intensity sur- 
faces. Arguably an object's visual appearance in an im- 
age is closely related to several factors including, among 
others, its three dimensional shape, albedo, surface texture 
and the imaged viewpoint. It is non-trivial to separate the 
different factors constituting an object's appearance. For 
example, the face of a person has a unique appearance that 
cannot just be characterized by the geometric shape of the 
'component parts'. In this paper a characterization of the 
shape of the intensity surface of imaged objects is used for 
retrieval. The experiments conducted show that retrieved 
objects have similar visual appearance, and henceforth an 
association is made between 'appearance' and the shape of 
the intensity surface. 

Specifically, this paper focuses on a representation for 
computing global similarity. That is, the task is to find 
images that, as a whole, appear visually similar. The util- 
ity of global similarity retrieval is evident, for example, in 
finding similar scenes or similar faces in a face database. 
In addition, practical applications such as finding similar 
trademarks in a trademark database significantly benefit 
from global similarity retrieval. 

The image intensity surface is robustly characterized 
using features obtained from responses to multi-scale 
Gaussian derivative filters. Koenderink [8] and others [3] 
have argued that the local structure of an image can be 
represented by the outputs of a set of Gaussian derivative 
filters applied to an image.   That is, images are filtered 
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with Gaussian derivatives at several scales and the result- 
ing response vector locally describes the structure of the 
intensity surface. By computing features derived from the 
local response vector and accumulating them over the im- 
age, robust representations appropriate to querying images 
as a whole (global similarity) can be generated. One such 
representation uses histograms of features derived from 
the multi-scale Gaussian derivatives. Histograms form a 
global representation because they capture the distribution 
of local features (A histogram is one of the simplest ways 
of estimating a non parametric distribution). This global 
representation can be efficiently used for global similarity 
retrieval by appearance and retrieval is very fast. 

The choice of features often determines how well the 
image retrieval system performs. Here the task is to ro- 
bustly characterize the 3 dimensional intensity surface. A 
3-dimensional surface is uniquely determined if the local 
curvatures everywhere are known. Thus, it is appropriate 
that one of the features be local curvature. The principal 
curvatures of the intensity surface are invariant to image 
plane rotations, monotonic intensity variations and further, 
their ratios are in principle insensitive to scale variations of 
the entire image. However, spatial orientation information 
is lost when constructing histograms of curvature (or ratios 
thereof) alone. Therefore we augment the local curvature 
with local phase, and the representation uses histograms of 
local curvature and phase. 

Local principal curvatures and phase are computed 
at several scales from responses to multi-scale Gaussian 
derivative filters. Then histograms of the curvature ra- 
tios [7, 1] and phase are generated. Thus, the image is 
represented by a single vector (multi-scale histograms). 
During run-time the user presents an example image as 
a query and the query histograms are compared with the 
ones stored, and the images are then ranked and displayed 
in order to the user. 

The rest of the paper is organized as follows. Section 2 
surveys related work in the literature. In section 3, the no- 
tion of appearance is developed further and characterized 
using Gaussian derivative filters and the derived global 
representation is discussed. Comparisons are made in the 
context of trademark retrieval with the traditional moment 
invariants. A discussion and conclusion follows in Sec- 
tion 4. 

2   RELATED WORK 
Several authors have tried to characterize the appear- 

ance of an object via a description of the intensity surface. 
In the context of object recognition [14] represent the ap- 
pearance of an object using a parametric eigen space de- 
scription. This space is constructed by treating the image 
as a fixed length vector, and then computing the principal 
components across the entire database. The images there- 
fore have to be size and intensity normalized, segmented 

and trained. Similarly, using principal component repre- 
sentations described in [5] face recognition is performed 
in [19]. In [17] the traditional eigen representation is aug- 
mented by using most discriminant features and is applied 
to image retrieval. The authors apply eigen representation 
to retrieval of several classes of objects. The issue, how- 
ever , is that these classes are manually determined and 
training must be performed on each. The approach pre- 
sented in this paper is different from all the above because 
eigen decompositions are not used at all to characterize 
appearance. Further, the method presented uses no learn- 
ing and, does not require constant sized images. It should 
be noted that although learning significantly helps in such 
applications as face recognition, however, it may not be 
feasible in many instances where sufficient examples are 
not available. This system is designed to be applied to a 
wide class of images and there is no restriction per se. 

In earlier work we showed that local features computed 
using Gaussian derivative filters can be used for local sim- 
ilarity, i.e. to retrieve parts of images [12]. Here we argue 
that global similarity can be determined by computing lo- 
cal features and comparing distributions of these features. 
This technique gives good results, and is reasonably toler- 
ant to view variations. Schiele and Crowley [16] used such 
a technique for recognizing objects using grey-level im- 
ages. Their technique used the outputs of Gaussian deriva- 
tives as local features. A multi-dimensional histogram of 
these local features is then computed. Two images are con- 
sidered to be of the same object if they had similar his- 
tograms. The difference between this approach and the 
one presented by Schiele and Crowley is that here we use 
ID histograms (as opposed to multi-dimensional) and fur- 
ther use the principal curvatures as the primary feature. 

The use of Gaussian derivative filters to represent ap- 
pearance is motivated by their use in describing the spatial 
structure [8] and its uniqueness in representing the scale 
space of a function [9, 6,21,18] The invariance properties 
of the principal curvatures are well documented in [3]. 

In the context of global similarity retrieval it should be 
noted that representations using moment invariants have 
been well studied [13]. In these methods global representa- 
tion of appearance may involve computing a few numbers 
over the entire image. Two images are then considered 
similar if these numbers are close to each other (say using 
an L2 norm). We argue that such representations are not 
able to really capture the "appearance" of an image, par- 
ticularly in the context of trademark retrieval where mo- 
ment invariants are widely used. In other work [12] we 
compared moment invariants with the technique presented 
here and found that moment invariants work best for a sin- 
gle binary shape without holes in it, and, in general, fare 
worse than the method presented here. 

Texture based image retrieval is also related to the ap- 
pearance based work presented in this paper. Using Wold 



modeling, in [10] the authors try to classify the entire Bro- 
datz texture and in [4] attempt to classify scenes, such as 
city and country. Of particular interest is work by [11] who 
use Gabor filters to retrieve texture similar images. 

The earliest general image retrieval systems were de- 
signed by [2, 15]. In [2] the shape queries require prior 
manual segmentation of the database which is undesirable 
and not practical for most applications. 

3   Global representation of appearance 
Three steps are involved in order to computing global 

similarity. First, local derivatives are computed at several 
scales. Second, derivative responses are combined to gen- 
erate local features, namely, the principal curvatures and 
phase and, their histograms are generated. Third, the ID 
curvature and phase histograms generated at several scales 
are matched. These steps are described next. 

A. Computing local derivatives: Computing deriva- 
tives using finite differences does not guarantee stability 
of derivatives. In order to compute derivatives stably, the 
image must be regularized, or smoothed or band-limited. 
A Gaussian filtered image Ia = I * G obtained by con- 
volving the image I with a normalized Gaussian G(r,a) 
is a band-limited function. Its high frequency components 
are eliminated and derivatives will be stable. In fact, it has 
been argued by Koenderink and van Doom [8] and others 
[3] that the local structure of an image I at a given scale 
can be represented by filtering it with Gaussian derivative 
filters (in the sense of a Taylor expansion), and they term 
itthe-N-jet. 

However, the shape of the smoothed intensity surface 
depends on the scale at which it is observed. For exam- 
ple, at a small scale the texture of an ape's coat will be 
visible. At a large enough scale, the ape's coat will appear 
homogeneous. A description at just one scale is likely to 
give rise to many accidental mis-matches. Thus it is desir- 
able to provide a description of the image over a number 
of scales, that is, a scale space description of the image. It 
has been shown by several authors [9,6,21,18,3], that un- 
der certain general constraints, the Gaussian filter forms a 
unique choice for generating scale-space. Thus local spa- 
tial derivatives are computed at several scales. 

B. Feature Histograms: The normal and tangential cur- 
vatures of a 3-D surface (X,Y,Intensity) are defined as [3]: 

N(p,<r) = 

T(P,a) = 
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Where Ix (p, a) and Iy (p, a) are the local derivatives of 
Image I around point p using Gaussian derivative at scale 
a. Similarly Ixx (•, •), hy (■, •)> ar»d Iyy (■, •) are the corre- 
sponding second derivatives. The normal curvature N and 
tangential curvature T are then combined [7] to generate a 
shape index as follows: 

~N + T] 
C (p, a) = atan 

N-T (P>*) 

The index value C is § when N = T and is undefined 
when either N and T are both zero, and is, therefore, not 
computed. This is interesting because very flat portions of 
an image (or ones with constant ramp) are eliminated. For 
example in Figure 2(middle-row), the background in most 
of these face images does not contribute to the curvature 
histogram. The curvature index or shape index is rescaled 
and shifted to the range [0,1] as is done in [1]. A histogram 
is then computed of the valid index values over an entire 
image. 

The second feature used is phase. The phase is simply 
defined as P (p, a) = atan2 (Iy (p, a), Ix (p, a)). Note 
that P is defined only at those locations where C is and ig- 
nored elsewhere. As with the curvature index P is rescaled 
and shifted to lie between the interval [0,1]. 

Although the curvature and phase histograms are in 
principle insensitive to variations in scale, in early ex- 
periments we found that computing histograms at mul- 
tiple scales dramatically improved the results. An ex- 
planation for this is that at different scales different lo- 
cal structures are observed and, therefore, multi-scale his- 
tograms are a more robust representation. Consequently, 
a feature vector is defined for an image I as the vector 
Vt = (He(<T1)...He{orn),H„(a1)...Hp{an))yfhm 
Hp and Hc are the curvature and phase histograms respec- 
tively. We found that using 5 scales gives good results and 
the scales are 1 • ■ • 4 in steps of half an octave. 

C. Matching feature histograms:    Two feature vectors 
are compared using normalized cross-covariance defined 
as 

y(m)   .  y(m) 
dij = 

V! (m) V, (m) 

where V^' — Vj — mean(Vi). 
Retrieval is carried out as follows. A query image is se- 

lected and the query histogram vector Vq is correlated with 
the database histogram vectors V{ using the above formula. 
Then the images are ranked by their correlation score and 
displayed to the user. In this implementation, and for eval- 
uation purposes, the ranks are computed in advance, since 
every query image is also a database image. 
3.1   Experiments 

The   curvature-phase  method   is   tested   using  two 
databases. The first is a trademark database of 2048 im- 
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Figure 1: Trademark retrieval using Curvature and Phase 

Figure 2: Image retrieval using Curvature and Phase 

(also had Coca Cola logos) were retrieved (100% pre- 
cision), two other very dissimilar images with coca- 
cola logos were not. 

6. Scenes with Bill Clinton (72.8%). The retrieval in this 
case results in several mismatches. However, three of 

the four are retrieved in succession at the top and the 
scenes appear visually similar. 

While the queries presented here are not "optimal" with 
respect to the design constraints of global similarity re- 
trieval, they are however, realistic queries that can be posed 
to the system.   Mismatches can and do occur.  The first 



ages obtained from the US Patent and Trademark Office 
(PTO). The images obtained from the PTO are large, bi- 
nary and are converted to gray-level and reduced for the 
experiments. The second database is a collection of 1561 
assorted gray-level images. This database has digitized 
images of cars, steam locomotives, diesel locomotives, 
apes, faces, people embedded in different background(s) 
and a small number of other miscellaneous objects such 
as houses. These images were obtained from the Internet 
and the Corel photo-cd collection and were taken with sev- 
eral different cameras of unknown parameters, and under 
varying uncontrolled lighting and viewing geometry. 

In the following experiments an image is selected and 
submitted as a query. The objective of this query is stated 
and the relevant images are decided in advance. Then the 
retrieval instances are gauged against the stated objective. 
In general, objectives of the form 'extract images similar 
in appearance to the query' will be posed to the retrieval 
algorithm. A measure of the performance of the retrieval 
engine can be obtained by examining the recall/precision 
table for several queries. Briefly, recall is the proportion 
of the relevant material actually retrieved and precision is 
the proportion of retrieved material that is relevant [20]. 
It is a standard widely used in the information retrieval 
community and is one that is adopted here. 

Queries were submitted each to the trademark and as- 
sorted image collection for the purpose of computing re- 
call/precision. The judgment of relevance is qualitative. 
For each query in both databases the relevant images were 
decided in advance. These were restricted to 48. The top 
48 ranks were then examined to check the proportion of re- 
trieved images that were relevant. All images not retrieved 
within 48 were assigned a rank equal to the size of the 
database. That is, they are not considered retrieved. These 
ranks were used to interpolate and extrapolate precision at 
all recall points.In the case of assorted images relevance is 
easier to determine and more similar for different people. 
However in the trademark case it can be quite difficult and 
therefore the recall-precision can be subject to some error. 
The recall/precision results are summarized in Table 1 and 
both databases are individually discussed below. 

Figure 1 shows the performance of the algorithm on the 
trademark images. Each strip depicts the top 8 retrievals, 
given the leftmost as the query. Most of the shapes have 
roughly the same structure as the query. Note that, out- 
line and solid figures are treated similarly (see rows one 
and two in Figure 1). Six queries were submitted for the 
purpose of computing recall-precision in Table 1. 

Experiments are also carried out with assorted gray 
level images. Six queries submitted for recall-precision 
are shown in Figure 2. The left most image in each row is 
the query and is also the first retrieved. The rest from-left 
to right are seven retrievals depicted in rank order. Note 
that, flat portions of the background are never considered 

because the principal curvatures are very close to zero and 
therefore do not contribute to the final score. Thus, for 
example, the flat background in Figure 2(second row) is 
not used. Notice that visually similar images are retrieved 
even when there is some change in the background (row 
1). This is because the dominant object contributes most 
to the histograms. In using a single scale poorer results are 
achieved and background affects the results more signifi- 
cantly. 

The results of these examples are discussed below, with 
the precision over all recall points depicted in parenthe- 
ses. For comparison the best text retrieval engines have an. 
average precision of 50%: 

1. Find similar cars(65%). Pictures of cars viewed from 
similar orientations appear in the top ranks because 
of the contribution of the phase histogram. This re- 
sult also shows that some background variation can 
be tolerated. The eighth retrieval although a car is a 
mismatch and is not considered. 

2. Find same face(87.4%) and find similar faces: In the 
face query the objective is to find the same face. In 
experiments with a University of Bern face database 
of 300 faces with a 10 relevant faces each, the average 
precision over all recall points for all 300 queries was 
78%. It should be noted that the system presented 
here works well for faces with the same representa- 
tion and parameters used for all the other databases. 
There is no specific "tuning" or learning involved to 
retrieve faces. The query "find similar faces" resulted 
in a 100% precision at 48 ranks because there are far 
more faces than 48. Therefore, it was not used in the 
final precision computation. 

3. Find dark textured apes (64.2%). The ape query re- 
sults in several other light textured apes and country 
scenes with similar texture. Although these are not 
mis-matches they are not consistent with the intent of 
the query which is to find dark textured apes. 

4. Find other patas monkeys. (47.1%) Here there are 
16 patas monkeys in all and 9 within a small view 
variation. However, here the whole image is being 
matched so the number of relevant patas monkeys is 
16. The precision is low because the method cannot 
distinguish between light and dark textures, leading 
to irrelevant images. Note, that it finds other apes, 
dark textured ones, but those are deemed irrelevant 
with respect to the query. 

5. Given a wall with a Coca Cola logo find other Coca 
Cola images (63.8%). This query clearly depicts the 
limitation of global matching. Although all three 
database images that had a certain texture of the wall 



Table 1: Precision at standard recall points for six Queries 

Recall 0 10 20 30 40 50 60 70 80 90 100 
Precision(trademark) % 100 93.2 93.2 85.2 76.3 74.5 59.5 45.5 27.2 9.0 9.0 

Precision(assorted) % 100 92.6 90.0 88.3 87.0 86.8 83.8 65.9 21.3 12.0 1.4 

average(trademark) 61.1% 
average(assorted) 66.3% 

is the case where the global appearance is very different. 
The Coca Cola retrieval is a good example of this. Sec- 
ond, mismatches can occur at the algorithmic level. His- 
tograms coarsely represent spatial information and there- 
fore will admit images with non-trivial deformations. The 
recall/precision presented here compares well with text re- 
trieval. The time per retrieval is of the order of milli- 
seconds. In on going work we are experimenting with a 
database of 63000 images and the amount of time taken 
to retrieve is still less than a second. The space required 
is also a small fraction of the database. These are the pri- 
mary advantages of global similarity retrieval. That is, to 
provide a low storage, high speed retrieval with good re- 
call/precision. 

4 Conclusions and Limitations 
This paper demonstrates retrieval of similar objects on 

the basis of their visual appearance. Visual appearance 
is characterized using filter responses to Gaussian deriva- 
tives over scale space. In addition, we claim that global 
representations are better constructed by representing the 
distribution of robustly computed local features. Cur- 
rently we are investigating two issues. First is to scale the 
database up to about 100000 images and second is to pro- 
vide a mechanism for combining global and local similar- 
ity matching in a single framework. 
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